Nonlinear parabolic equation model for finite‐amplitude sound propagation in an inhomogeneous medium over a nonflat, finite‐impedance ground surface

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 3D Parabolic Equation Method for Sound Propagation in Moving Inhomogeneous Media

In this paper, a new formulation of the Helmholtz equation for sound propagation in a moving inhomogeneous medium in cylindrical coordinates is derived. Based on this formulation, a novel three-dimensional parabolic equation is constructed. This parabolic equation can be used to model sound propagation in an inhomogeneous arbitrary moving medium. The method is used here to simulate three-dimens...

متن کامل

Sound propagation in a turbulent atmosphere near the ground: a parabolic equation approach.

The interference of the direct wave from the point source to the receiver and the wave reflected from the impedance ground in a turbulent atmosphere is studied. A parabolic equation approach for calculating the sound pressure p at the receiver is formulated. Then, the parabolic equation is solved by the Rytov method yielding expressions for the complex phases of direct and ground-reflected wave...

متن کامل

Parabolic Equation for Nonlinear Acoustic Wave Propagation in Inhomogeneous Moving Media

A new parabolic equation is derived to describe the propagation of nonlinear sound waves in inhomogeneous moving media. The equation accounts for diffraction, nonlinearity, absorption, scalar inhomogeneities (density and sound speed), and vectorial inhomogeneities (flow). A numerical algorithm employed earlier to solve the KZK equation is adapted to this more general case. A two-dimensional ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of the Acoustical Society of America

سال: 2008

ISSN: 0001-4966

DOI: 10.1121/1.2935953